Menu

"I liked the algebraic way of looking at things.
I’m additionally fascinated when the algebraic method is applied to infinite objects”.

Irwing Kaplansky

Commutative Bezout rings in which 0 is adequate is a semi regular

 

 

Oksana Pihura


Department of Algebra and Logic

Faculty of Mechanics and Mathematics
Ivan Franko National University of L'viv

 
 

Abstract:

 

A ring R is a commutative ring with nonzero identity.

All necessary definitions and facts can be found in [1-4].

An element a∈R is called adequate if for any element b∈R we can find such two elements elements r, s∈R that the decomposition a=rs satisfies the following properties:
1) rR+bR=R
2) s'R+bR≠R, for any noninvertible divisor s' of element s.

Theorem 1. A ring R is a commutative ring in which 0 is adequate. Then for 0∈R/aR an element 0 is adequate.

Theorem 2. A ring R is a commutative Bezout ring in which 0 is adequate. Then for any nonzero and any noninvertible alement b∈R there exist an idempotent e∈R, such that be∈J(R) and eR+bR=R.

Theorem 3.  Semi prime commutative Bezout ring R is a ring in which zero is adequate if and only if R is a regular ring.

Theorem 4. A ring R is a commutative Bezout ring. Then the following statements are equivalent:
     1)  R is a ring in which zero is adequate;
     2)  R is a semi regular  ring.

 

References

  1. Білявська С. І., Забавський Б. В., Зв’язок адекватних кілець з чистими кільцями // Прикладні проблеми механіки І математики – 2012. – № 8. – С. 28 – 32.
  2. Забавский Б. В., Билявская С. И., Адекватное в нули кольцо является кольцом со свойством замены // Фундаментальнаяи прикладная математика, 2011/2012. т. – 17, № 3, С. – 61 – 66.
  3. HelmerO., The elementary divisor for certain rings without chain condition // Bull. Amer. Math. Soc. – 1943. – 49, № 2 – P. 225 – 236.
  4. Larsen M., Lewis W., Shores T., Elementary divisor rings and finitely presented modules // Trans. Amer. Math. Soc. – 1974. –№ 7 – P. 231 – 248.

 

Коментарі (0)

Rated 0 out of 5 based on 0 voters
There are no comments posted here yet

Залиште свій коментар

Posting comment as a guest. Sign up or login to your account.
Вкладення (0 / 3)
Share Your Location
back to top
Bookmaker with best odds http://wbetting.co.uk review site.
Archive 2009/10

Адміністратор, 29 Jun, 2010

Archive 2009/10

Bezout  duo rings  with adequate conditions

Адміністратор, 28 Apr, 2017

Bezout duo rings with adequate conditions

links

links

contacts us

Department of Algebra and Logic
Faculty of Mechanics and Mathematics
Ivan Franko National University of L'viv
1 Universytetska Str., 79000 Lviv, Ukraine
Tel: (+380 322) 394 172
E-mail: oromaniv at franko.lviv.ua

Photo gallery 2013