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Hermitian and elementary divisor rings
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Elementary divisor rings were defined by I. Kaplansky [1]. Any elementary
divisor ring is an Hermitian ring and Hermitian ring is a Bezout ring [2].
Gillman and Henriksen [3] constructed an example of a commutative
Bezout ring which is not an Hermitian ring and an example a commutative
Hermitian ring which is not an elementary divisor ring.

1Kaplansky I. Elementary divisors and modules // Trans. Amer. Math. Soc. – 1949.
– P. 464-491.

2Gillman L., Henriksen M. Some remarks about elementary divisor rings // Trans.
Amer. Math. Soc. – 1956. – 82. – P. 362-365.

3Gillman L., Henriksen M. Rings of continuous function in which every finitely
generated ideal is principal // Trans. Amer. Math. Soc. – 1956. – 82(2). – P. 366-391.
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We have the following chain of rings classes

Bezout ring ⊂ Hermitian ring ⊂ Elementary divisor ring

This inclusions are irreversible.
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Definition

It is said that matrices A and B over R are equivalent (A ∼ B) if there are
invertible matrices P and Q over R of appropriate sizes such that
A = PBQ. Say that a matrix A over a ring R admits a canonical diagonal
reduction if it is equivalent to a diagonal matrix

ε1 0 . . . 0 0 . . . 0
0 ε2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .

0 0 . . . εr 0 . . . 0
0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 . . . 0


,

where Rεi+1R ⊆ εiR ∩ Rεi for any i ∈ {1, . . . , r − 1}. If every matrix over
R admits a canonical diagonal reduction then R is said to be an
elementary divisor ring.
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Definition

If every 1× 2 (2× 1) matrix over R admits a canonical diagonal reduction
then, R is called a right (left) Hermitian ring . It is clear that in the case
of commutative rings every right Hermitian ring is a left Hermitian ring.
An Hermitian ring is a ring which is a both right and left Hermitian ring.
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Remark

Let R be a right Hermitian ring. Then for any a, b ∈ R there exists an
invertible 2× 2-matrix P and there exists d ∈ R such that

(a, b)P = (d , 0).

Suppose that

P =

(
x u
y v

)
and P−1 =

(
a1 b1
r s

)
.

Then ax + by = d , a = da1, b = db1, a1R + b1R = R and aR + bR = dR,
i.e. R is a right Bezout ring.
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Theorem (Henriksen’s criterion)

A commutative Bezout ring R is an Hermitian ring if and only if for
a, b ∈ R there exist d , a1, b1 ∈ R such that a = a1d , b = b1d ,
a1R + b1R = R. [a]

aGillman L., Henriksen M. Some remarks about elementary divisor rings //
Trans. Amer. Math. Soc. – 1956. – 82. – P. 362-365.
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Theorem

A commutative Bezout ring R is an Hermitian ring if and only if
st.r.(R) = 2.

Recall a ring R is a ring of stable range 2 if aR + bR + cR = R we have
(a + cx)R + (b + cy)R = R for some x , y ∈ R.
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Theorem

Let R be a commutative ring. If all 1× 2, 2× 1 and 2× 2-matrices over R
admit a canonical diagonal reduction then R is an elementary divisor ring.
[a]

aKaplansky I. Elementary divisors and modules // Trans. Amer. Math. Soc.
– 1949. – P. 464-491.
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Theorem (Kaplansky’s criterion)

A commutative Hermitian ring is an elementary divisor ring if and only if
aR + bR + cR = R and there exist elements p and q such that
paR + (pb + qc)R = R. [a],[b]

aKaplansky I. Elementary divisors and modules // Trans. Amer. Math. Soc.
– 1949. – P. 464-491.

bGillman L., Henriksen M. Some remarks about elementary divisor rings //
Trans. Amer. Math. Soc. – 1956. – 82. – P. 362-365.
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Adequate rings
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We consider commutative rings, in which any nonzero prime ideal is
contained in a unique maximal ideal.

Definition

An element a of a commutative ring R is called adequate to an element b
if there exist elements r , s ∈ R such that

1 a = rs;

2 rR + bR = R;

3 s ′R + bR 6= R for any nonunit divisor s ′ of s.
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Definition

An element a in R is called adequate if it is adequate to every element b
of R. A commutative ring is called an adequate ring if all its nonzero
elements are adequate. If even a zero element of an adequate ring is
adequate such a ring is called everywhere adequate.

Although any everywhere adequate ring is an adequate ring the converse is
not always true. For example, a ring of integers Z is adequate but not
everywhere adequate.
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Since any commutative principal ideal domain is a factorial domain [4], we
have the following result.

Theorem

A commutative principal ideal domain is an adequate domain.

4Kaplansky I. Commutative rings // The University of Chicago Press, Chicago and
London. – 1974. – 180 p.
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A ring of entire functions on the complex plane is a commutative adequate
Bezout domain. Obviously, R is not a principal ideal domain.

Theorem

Every commutative von Neumann regular ring is an everywhere adequate
ring.

Recall that R is a von Neumann regular ring of for any a ∈ R we have
axa = a for some x ∈ R.
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Theorem

Every nonzero prime ideal of an adequate Bezout ring R is contained in a
unique maximal ideal of R.
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Example (Henriksen’s example)

Consider the subring

R = {z0 + a1x + a2x
2 + . . . |z0 ∈ Z, ai ∈ Q}

of the ring of formal power series over Q. [a]

aHenriksen M. Some remarks on elementary divisor rings // Michigan Math.
J. – 1955-1956. – 3. – P. 159-163.

There is example Bezout domain (= elementary divisor domain) which is
not adequate ring.
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Stable range of adequate rings

Bohdan Zabavsky (LNU) Conditions for stable range April 26, 2019 19 / 60



We will calculate of stable range of an adequate Bezout ring.

Theorem

If R is an adequate Bezout ring then st.r.(R) = 2.

Theorem

An adequate Bezout ring is a Hermitian ring.

Theorem

If R is an adequate Bezout ring and J(R) 6= 0 then st.r.(R) = 1.
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Theorem

Adequate ring is an elementary divisor rings if and only if it is Bezout ring.

Theorem

A commutative Bezout domain is an adequate domain if and only if R/aR
is a semi-regular ring for any nonzero element a ∈ R.

Recall that a ring R is a ring of stable range 1 if aR + bR = R we have
(a + bx)R = R for some x ∈ R.
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Zero-adequate and everywhere adequate rings
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Now we are going to study commutative rings for which zero is an
adequate element. The structure of these allows us to construct more
examples of adequate rings.

Theorem

Let a be an adequate element of a commutative Bezout ring. Then zero is
an adequate element of the factor-ring R/aR.
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Theorem

Let 0 be an adequate element of a commutative Bezout ring R. Then R is
a ring of idempotent stable range 1.

Theorem

Let R be a commutative Bezout ring and 0 be an adequate element of R.
Then R is a clean ring.

Recall that a ring R is a clean ring if for any a ∈ R we have a = u + e,
where u is invertible and e2 = 2.
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Now, we turn to answer another question. Let R be a commutative
Bezout ring and zero be an adequate element in the factor-ring R/aR. Is
the element a adequate in R? The answer is affirmative in the case of a
commutative Bezout domain, and it is given by the following theorem.

Theorem

Let R be a commutative Bezout domain. If zero is an adequate element of
the factor-ring R/aR then a is an adequate element of the domain R.
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We will consider everywhere adequate rings. The main examples of
everywhere adequate rings include von Neumann regular rings and
valuation rings.
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Theorem

Any everywhere adequate Bezout ring is a clean ring.

Theorem

Any everywhere adequate Bezout ring is a PM-ring.

Recall that R is a PM-ring if for any prime ideal contained in unique
maximal ideal.
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Theorem

Any everywhere adequate Bezout ring is a ring of idempotent stable
range 1.

Recall that R is a ring of idempotent stable range 1 if aR + bR = R we
have a + be — invertible element, where e2 = 2 ∈ R.
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Neat range 1
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As proved a commutative Hermitian ring is precisely a Bezout ring of
stable range 2. There is a similar description of commutative elementary
divisor rings.

Definition

A commutative ring R is said to be a ring of neat range 1 if for any
a, b ∈ R such that aR + bR = R and for any c ∈ R \ {0} there exists
u, v , t ∈ R such that a + bt = uv , where uR + cR = R,
vR + (1− c)R = R, and uR + vR = R.

This denote, that R/(a + bt)R is a clean ring.

An obvious example of a ring of neat range 1 is any ring of stable range 1.
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Proposition

Let R be a commutative Bezout ring and let a be an element of R such
that for any c ∈ R there exist u, v ∈ R such that a = uv where
uR + cR = R, vR + (1− c)R = R, and uR + vR = R. Then R/aR is a
clean ring.

Theorem

A commutative Hermitian ring R is an elementary divisor ring if and only
if R is a ring of neat range 1.
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A new example of a ring of neat range 1 is a Dirichlet domain.

Definition

A commutative domain R is said to be a Dirichlet domain if for any
elements a, b ∈ R such that aR + bR = R there exist an element t ∈ R
such that the element a + bt is an atom of R.

Recall that element a is an atom of R if decomposition a = bc we have
that b or c is invertible element of R.
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The ring of integers Z is an obvious example of a Dirichlet ring (by
Dirichlet Theorem). A ring C[x ] is not a Dirichlet ring. Really,
x2 ·C[x ] + (x2 + 1) ·C[x ] = C[x ] then deg(x2f (x) + (x2 + 1)g(x)) 6= 1 for
any f (x) and g(x) in C[x ].

Let R be a commutative Bezout domain and p be an atom of R. Then
pR ∈ mspecR and R/pR is a field.

Theorem

A Dirichlet Bezout domain is an elementary divisor ring.
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Morphic rings
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Proposition

If R is a commutative Bezout domain and 0 6= a ∈ R, then R/aR is a
morphic ring.
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Theorem

Let R be a commutative Bezout domain. Then for any nonzero element
a ∈ R, R/aR is a morphic ring.

Recall that R is a morphic ring if for any a ∈ R there exist b ∈ R such
that bR = Ann(a).
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As a consequence of this fact we can give an example of a commutative
morphic ring that is not clean. It shows that an answer to a question put
by Nicholson in [5] is negative.

Example

Let R be a Henriksen’s example:

R = {z0 + a1x + a1x
2 + . . . | z0 ∈ Z, ai ∈ Q, i = 1, 2, . . .}.

We have shown that R is a commutative Bezout domain [a]. The factor
ring R/xR is a morphic ring but it is not clean since a homomorphic image
of the ideal N = {a1x + a1x

2 + . . . |ai ∈ Q, i = 1, 2, . . .} is an ideal N/xR
that is prime, but belongs to all maximal ideals in the factor ring R/xR.
That is why R/xR is not clean, because any clean ring has to be a
PM-ring. Note that xR 6= N, since x/2 ∈ N but x/2 /∈ xR.

aHenriksen M. Some remarks on elementary divisor rings // Michigan Math.
J. – 1955-1956. – 3. – P. 159-163.

5Nicholson W. K., Sanchez Campos E., Rings with the dual of the isomorphism
theorem // J.Algebra. – 2004. – 271. – P. 391-406.
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In his pioneering paper Kaplansky [6] raised the following question: if
aR = bR in a ring R then are a and b necessarily right associates?
Developing these ideas Canfell [7] introduced the concept of uniquely
generated set of principal ideals.

Definition

Let {aiR|i = 1, 2, . . . , n} be a finite set of principal ideals of a
commutative ring R. It is said that this set of principal ideals is uniquely
generated if whenever a1R = b1R, . . . , anR = bnR there exist elements
u1, . . . , un ∈ R such that ai = biui , i = 1, 2, . . . , n, and
u1R + u2R + . . .+ unR = R. The dimension of a commutative ring R
(denoted by dim(R)) is the least integer n such that every set of n + 1
principal ideals is uniquely generated.

6Kaplansky I. Elementary divisors and modules // Trans. Amer. Math. Soc. – 1949.
– P. 464-491.

7Canfell M. J. Uniqueness of generators of principal ideals in rings of continuous
function // Proc. Amer. Math. Soc. – 1970. – 26(4). – P. 517-573.
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Canfell obtained the characterizations of n-dimensional F -spaces in terms
of rings of continuous real-valued and complex-valued functions defined on
such spaces. Extending the uniqueness notion of principal ideals generators
he gave an algebraic characterization of the concept ”n-dimensional”.
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We will show that in the case of a commutative morphic ring the property
dim(R) = 1 is equivalent to the stable range 2 condition.

Theorem

If R is a commutative Bezout ring with dim(R) = 1, then st.r.(R) = 2.

Theorem

Let R be a commutative morphic ring of stable range 2. Then
dim(R) = 1.

Theorem

A commutative morphic ring R is the ring of stable range 2 if and only if
dim(R) = 1.
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Theorem

If R is an elementary divisor domain and a ∈ R \ {0}, then the factor ring
R/aR is a morphic ring of neat range 1.
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Gelfand range 1 and Bezout PM∗-domains
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Definition

A nonzero element a of a commutative ring is called a PM-element if the
factor-ring R/aR is a PM-ring.

Proposition

For a commutative ring R the following statements are equivalent:

(1) a is a PM-element;

(2) for each prime ideal P containing the element a ∈ P there exists a
unique maximal ideal such that P ⊂ M.
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We obtain the following results.

Proposition

A commutative domain R is a domain in which any nonzero prime ideal is
contained in a unique maximal ideal if and only if any nonzero element of
R is a PM-element.

Proposition

An element a of a commutative Bezout domain R is a PM-element if and
only if for every elements b, c ∈ R such that aR +bR + cR = R an element
a can be represented as a = rs, where rR + bR = R and sR + cR = R.
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Theorem

A commutative Bezout domain in which any nonzero prime ideal is
contained in a unique maximal ideal is an elementary divisor ring.
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In the case of a commutative Bezout domain this result can be clarified
and improved.

Definition

Let R be a commutative Bezout domain. A ring R is called a ring of
Gelfand range 1 if for any a, b ∈ R such that aR + bR = R there exists an
element t ∈ R such that a + bt is a PM-element.
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Since every unit is a PM-element we have the following result.

Proposition

Any commutative Bezout domain of stable range 1 is a ring of Gelfand
range 1.

Theorem

A commutative Bezout domain is an elementary divisor ring if and only if
it is a ring of Gelfand range 1.
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Theorem

A commutative ring of stable range 1 is an elementary divisor ring if and
only if it is a Bezout ring.

Hence the open problem ”is every commutative Bezout domain which is
not a ring of stable range 1 an elementary divisor ring” is equivalent to the
problem does every commutative Bezout domain R which is not a ring of
stable range 1 contains a non-unit element a ∈ R such that
st.r .(R/aR) = 1.
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Full matrices over elementary divisor rings
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Definition

A matrix A ∈ Rn is called full if RnARn = Rn. We denote by F (Rn) the
class of all full matrices in Rn, where Rn = Mn(R).

Theorem

Let R be a commutative Bezout ring of stable range 2. Let A,B ∈ F (R2)
be such that AR2 + BR2 = R2. Suppose that B admits a canonical
diagonal reduction. Then there exists a full matrix T ∈ F (R2) such that
A + BT is an invertible matrix.
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Theorem

Let R be a commutative elementary divisor ring. If A,B ∈ F (R2) and
AR2 + BR2 = R2, then there exists a full matrix T ∈ F (R2) such that
A + BT is an invertible matrix.

Moreover, we derive the following result.

Theorem

Let R be a commutative elementary divisor ring. Then for any full
matrices A,B ∈ F (R2) there exist full matrices Q1,Q2,P ∈ R2 such that
A = BQ1 + P, B = PQ2.
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Dyadic range 1
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We describe commutative elementary divisor rings based on the concept of
a ring of dyadic range 1.
Let R be a associative ring with unit and 1 6= 0.

Definition

Let a, b ∈ R and aR + bR = R. Will say that a pair (a, b) has a right
diadem, or (a, b) is a right dyadic pair, if there exists an element λ ∈ R
such that for the element a + bλ and any elements c, d ∈ R such that
(a + bλ)R + cR + dR = R there exists an element µ ∈ R such that
(a + bλ)R + (c + dµ)R = R. Call an element a + bλ a right diadem of
the pair (a, b). A left diadem and a left diadic pair can be introduced
analogously. A right and left diadem we will simply call a diadem.
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Example

An obvious example of a diadic pair (that may also be called a trivial
diadic pair) is (a, u), where u is an invertible element of a ring R and a is
any element of R. Here, u + a0 and a + (−au−1 + 1)u are right diadems
of the pair (a, u).
To obtain a nontrivial example, take a pair (a, a + u), where a ∈ R and u
is an invertible element of R. Therefore, a + (a + u)− 1, (a + u) + a(−1)
are a right diadems of the pair (a, a + u).
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Definition

We say that a ring R is a ring of a right dyadic range 1 if for any elements
a, b the equality aR + bR = R implies that a pair (a, b) has a right
diadem. Similarly, we define a ring of a left dyadic range 1. A ring of right
and left dyadic range 1 is called a ring of dyadic range 1.

Example

Any ring of stable range 1 is a ring of dyadic range 1.
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Moreover, we have the following result.

Theorem

A Bezout ring of right dyadic range 1 is a ring of stable range 2.

Proposition

A ring R is of right dyadic range 1 if and only if R/J(R) is a ring of right
dyadic range 1.

Bohdan Zabavsky (LNU) Conditions for stable range April 26, 2019 56 / 60



We will use the following result.

Proposition

Let R be a commutative ring and (a, b) is a dyadic pair. An element
a + bλ is a diadem if and only if the factor-ring R/(a + bλ)R is a ring of
stable range 1.

Proposition

Let R be a commutative Bezout ring of dyadic range 1. Then for any
divisor α of the diadem a + bλ and any elements c , d ∈ R such that
αR + cR + dR = R there exists an element µ ∈ R such that
αR + (c + dµ)R = R.
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Theorem

A commutative Bezout ring is an elementary divisor ring if and and only if
it is a ring of dyadic range 1.

As a consequence of this theorem we have the following.

Proposition

Let R be a commutative Bezout ring of dyadic range 1. Then for any ideal
I of R the factor-ring R/I is a ring of dyadic range 1.
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Proposition

Let R is a commutative semihereditary Bezout ring. If for any regular
element (non zero divisor) r ∈ R the factor-ring R/rR is a ring of dyadic
range 1 then R is a ring of dyadic range 1.

Consequently, we have that any example of a commutative Hermitian ring
which is not an elementary divisor ring [8] is an example of a commutative
Bezout ring of stable range 2 which is not of a ring of dyadic range 1.

8Gillman L., Henriksen M. Rings of continuous function in which every finitely
generated ideal is principal // Trans. Amer. Math. Soc. – 1956. – 82(2). – P. 366-391.
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The End
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