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Stable range conditions
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The notion of stable range for rings was introduced by H. Bass. This
notion was used by Bass for the study of the stability properties of linear
groups in algebraic K-theory, but later it become an important notion in
ring theory in its own right.
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Definition

Let R be an associative ring with identity and 1 6= 0. If for a row
(a1, . . . , an) ∈ Rn one can find (b1, . . . , bn) ∈ Rn such that

a1b1 + . . .+ anbn = 1,

we say that (a1, . . . , an) is a right unimodular row over R. The notion of a
left unimodular row over R can be defined similarly. Also, the number n is
called the length of the unimodular row.

Clearly one can say that a nonzero row (a1, . . . , an) is left (right)
unimodular if and only if it generates a trivial non zero left (right) ideal.
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Definition

We say that a positive integer n is in the stable range [a] of a ring R if for
every right unimodular row (a1, . . . , an+1) ∈ Rn+1 there exists
(b1, . . . , bn+1) ∈ Rn+1 such that

a1b1 + . . .+ an+1bn+1 = 1

and (b1, . . . , bn) is a left unimodular row. In such case we also say that n
is a stable range of the ring R, or R satisfies the n-stable range condition,
and write that as st.r.(R) = n. If there is no such n then we say that the
stable range of R is infinite and write this fact as st.r.(R) =∞.

aBass H. K-theory and stable algebra // Inst. Hautes Etudes. Sci. Publ.
Math. – 1964. – 22. – P. 485-544.
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It is natural to say that the stable range of R is the least possible positive
integer n which satisfies the stable range condition for R, but keep in mind
that, in fact, any bigger m also satisfies this condition, i.e.

st.r.(R) = {n, n + 1, . . .}.
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Proposition

For a ring R the following conditions are equivalent:

(i) for every right unimodular row (a1, . . . , an+1) ∈ Rn+1 there exists
(b1, . . . , bn+1) ∈ Rn+1 such that

a1b1 + . . .+ an+1bn+1 = 1, Rb1 + . . .+ Rbn = R;

(ii) for every right unimodular row (a1, . . . , an+1) ∈ Rn+1 there exists
(x1, . . . , xn) ∈ Rn such that

(a1, . . . , an) + an+1(x1, . . . , xn) = (a1 + an+1x1, . . . , an + an+1xn)

is right unimodular.
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Since the definition of a stable range is given for the case of right
unimodular rows then it is natural to use the term “right stable range”
emphasising on the type of unimodular rows we use, and define the “left
stable range” in a similar manner. However, due to the results of
Vasserstein [1], [2] and Warfield [3] this notions coincide and we simply
speak about the “stable range” of a ring R.

1Vaserstein L. N. A stable range of rings and dimension of topological spaces //
Funk. An. Pril. – 1971. – 5(2). – P. 17-27

2Vaserstein L. N. Bass’s first stable range condition // J. Pure Appl. Alg.– 1984.
– 34(2-3). – P. 319-330

3Warfield Jr. R. B. Stable equivalence of matrices and resolutions // Comm.
Algebra. – 1978. – 6(17). – P. 1811-1828.

Bohdan Zabavsky (LNU) Bass stable range April 26, 2019 8 / 87



Theorem (Stable range left-right symmetry)

Let R be a ring. Then

st.r.(R) = st.r.(Rop),

where Rop means the opposite ring to R.
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Now we have a two results that state that stable range of quotient-ring
R/I cannot exceed the stable range of R, and they coincide when I is a
radical ideal.

Proposition

If I is a two-sided ideal of R then st.r.(R/I ) ≤ st.r.(R).

Theorem

For any ring R and any ideal I ⊆ J(R) :

st.r.(R) = st.r.(R/I ).

In particular, st.r.(R) = st.r.(R/J(R)).
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We are going to derive the exact formula that allows us to calculate the
stable range of matrix ring over R based on the stable range of R itself.
We follow the method which was first used by Vaserstein [4].

4Vaserstein L. N. A stable range of rings and dimension of topological spaces //
Funk. An. Pril. – 1971. – 5(2). – P. 17-27
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Theorem (Vaserstein’s formula)

For any ring R and any k ≥ 1 :

st.r.(Mk(R)) = 1 +

[
st.r.(R)− 1

k

]
,

where [x ] denotes the least integer greater than or equal to a real
number x .
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Definition

Suppose that P is a ring-theoretical property. We say that P is a Morita
invariant provided whenever a ring R satisfies P, Mk(R) also satisfies P
for all k ≥ 1.
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Remark

(a) Suppose that st.r.(R) equals 1 or 2. Then for any k ≥ 1 we get that
st.r.(Mk(R)) also equals 1 or 2 respectively. In other words, stable
range 1 and 2 properties are Morita invariants.

(b) Due to the increasing numerator in the formula of st.r.(Mk(R)) we
obtain that starting from some sufficiently large k all Mk(R) are rings
of stable range 2 whenever 1 < st.r.(R) <∞ (in fact starting with
size k = st.r.(R)− 1).
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In the above we have seen that stable range plays a role of linear
independence of vectors in vector space but in case of ring elements. The
other problem that is strictly connected to the linear independence is the
existence of basis of free module and the number of its elements.
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Definition

A ring R has invariant basis number (IBN) if for all n ∈ N and p ≥ 0 the
R-module isomorphism Rn+p ∼= Rn implies that p = 0, i.e. the number of
generators of free R-module Rn is uniquely defined for any n ≥ 1.
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Remark

It can be proved that R has IBN if and only if for any pair of matrices
A ∈ Mn,m(R), B ∈ Mm,n(R) such that AB = In, BA = Im, one can infer
that n = m. This reveals the left-right symmetry of the IBN notion.
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Definition

A ring R is called Dedekind-finite if for any a, b ∈ R

ab = 1 =⇒ ba = 1.

If for any n ≥ 1 the ring Mn(R) is Dedekind-finite then R is said to be
stably finite.
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Example

(1) Any commutative ring, one-sided Noetherian ring, reversible ring (i.e.
ab = 0 implies ba = 0), Algebraic algebra over a field is
Dedekind-finite ring. In particular, any finite ring or, more generally, a
ring with finite index of nilpotency is a Dedekind-finite. Also, the
direct product of Dedekind-finite rings is Dedekind-finite.

(2) All commutative rings and one-sided Noetherian rings are stably finite.

(3) For any group G the group ring ZG has IBN.
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Remark

(1) IBN property and stable finiteness are Morita invariants.

(2) Clearly any Dedekind-finite ring has IBN, and every stably finite ring
is Dedekind-finite. This inclusions are strict.
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Example

Let R be a k-algebra generated over the field k by elements
{s, t, u, v ,w , x , y , z} such that(

s u
t v

)(
x y
z w

)
=

(
1 0
0 1

)
.

Then R is a Dedekind-finite domain, but M2(R) is not Dedekind-finite.
Moreover, by the remark above, M2(R) has IBN.
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Definition

A ring R is called purely infinite if R ∼= R2 as R-modules.

Of course purely infinite rings have no IBN and R ∼= Rn for every n ≥ 1,
moreover any homomorphism f : R → S from the purely infinite ring R
makes S also purely infinite.

Example

For any ring R the ring S = EndR(R∞) is purely infinite, where R∞

denotes an infinite direct product of R.
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Theorem

Every finite stable range ring R has IBN.

Bohdan Zabavsky (LNU) Bass stable range April 26, 2019 23 / 87



Remark

Since rings EndR(R∞) and C (R) don’t have IBN we conclude that they
have infinite stable range. Speaking more generally, for any purely infinite
ring R :

st.r.(R) =∞.
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Theorem

If R is a ring of stable range 1, then it is stably finite.
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Stably free modules
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The essential role in algebra is played by projective objects. They can be
described as objects P such that any morphism from P to some
quotient-object A/B lifts to a morphism from P to the whole A. In case of
module categories such objects are called projective modules and can be
equivalently described as direct summands of free modules.
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Definition

An R-module P is called projective if there exists an R-module Q and a
free R-module F such that

P ⊕ Q = F .

The category of finitely generated projective (left or right) R-modules is
denoted by Proj(R).
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In the case of P ∈ Proj(R) we can also write that

P ⊕ Q ∼= Rn

for some Q ∈ Proj(R) and n ≥ 1. Obviously, free modules are projective.
If an R-module Q (the complement of P) can be chosen to be free we
obtain a new notion.
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Definition

An R-module P is called stably free (of rank n −m) if

P ⊕ Rm ∼= Rn

for some m and n.
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Example

(1) The unimodular row σ = (x , y , z) is not completable to invertible
matrix over R[x , y , z ]/〈x2 + y2 + z2 − 1〉, but Kerσ ⊕ R ∼= R3. Hence
Kerσ is a stably free module of rank 2 that is not free.

(12) Any stably free R-module is free in case when R is a division ring,
ring of integers or Mn(k), where k is a field.
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Theorem (Bass cancelation theorem)

Over a ring R of stable range n any stably free module of rank m ≥ n is
free.

Corollary

Let R be a ring of stable range 1. Then any finitely generated stably free
R-module is free.
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Theorem (Bass Inequality)

Let R be a commutative Noetherian ring of Krull dimension K .dim(R).
Then

st.r.(R) ≤ K .dim(R) + 1.
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Warfield has proved the following theorem that makes the connection
between the stable range of endomorphism ring of some module and the
decompositions of this module (such module property is called the
n-substitution property).
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Theorem (Warfield substitution theorem)

For the ring of endomorphisms E of the right R-module A the following
conditions are equivalent:

(i) st.r.(E ) ≤ n;

(ii) if M ∈ Mod− R can be decomposed as

M ∼= An ⊕ B1
∼= A⊕ B2

for some B1,B2 ≤ M then there exist C ,D ≤ M such that

M = C ⊕ D ⊕ B1 = C ⊕ B2.
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Theorem

Let P and Q be right R-modules. Then

st.r.(EndR(P) ≤ n, st.r.(EndR(Q) ≤ n =⇒ st.r.(EndR(P ⊕ Q) ≤ n.
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Stable range
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Theorem

Let R be a direct product of rings Ri , i ∈ I . Then

st.r.(R) = supi∈I (st.r.(Ri )).

Corollary

If R is semisimple then it is a ring of stable range 1.
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Definition

A ring R is called semilocal (local) if R/J(R) is a semisimple (division)
ring.

Since we have proved that st.r.(R) = st.r.(R/J(R)), and the ring is
semisimple if and only if it is artinian with trivial Jacobson radical, then we
obtain the following

Corollary

The stable range of any semilocal, local or artinian ring equals to 1.

Bohdan Zabavsky (LNU) Bass stable range April 26, 2019 39 / 87



In particular, any ring with finite number of elements (or more generally
with finite number of ideals) has stable range 1.
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Example

Since any Z/nZ is a finite ring, then its stable range equals to 1. If one
considers a triple of coprime elements a, b, c ∈ Z then a = a + Z,
b = b + cZ are coprime in Z/cZ. Since st.r.Z/cZ = 1 then there exists
x ∈ Z/cZ such that

a + xb ∈ U(Z/cZ) = {t|tZ + cZ = Z}.

Therefore, (a + xb)Z + cZ = Z and st.r.(Z) ≤ 2. Finally, note that there is
no integer x such that 3 + 5x ∈ U(Z) = {±1}, so st.r.(Z) > 1.
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Proposition

Let R be a ring of stable range 1. If aR = bR then a = bu, where u is an
unit element of R.
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Theorem

Let R be a ring in which every left principal ideal is a left annihilator for
some element in R. Then the following statements are equivalent:

(1) st.r.(R) = 1;

(2) if aR = bR then there exist units u, v ∈ R such that au = b and
bv = a.
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Proposition

Let I be an ideal of a ring R. Then the following statements are
equivalent:

(1) st.r.(R) = 1;

(2) st.r.(R/I ) = 1 and st.r.(R/r(t)) = 1;

(3) st.r.(R/I ) = 1 and st.r.(R/l(tI )) = 1,

where r(t) — right annihilator for t, l(t) — left annihilator for t.
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Proposition

A ring R has stable range 1 if and only if

aR + bR + cR = R

implies that aR + (b + cr)R = R for some r ∈ R

Proposition

Stable range R equal to 2 if and only if aR + bR + cR = R implies that
au + bv + cw = 1 for some u, v ,w ∈ R such that Ru + Rv = R.
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Von Neumann regular rings
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A von Neumann regular ring is a ring such that for every a ∈ R there
exists an x ∈ R such that a = axa.
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Example

Every field (and every skew field) is von Neumann regular as a ring, since
for a 6= 0 we can take x = a−1. An integral domain is von Neumann
regular if and only if it is a field. Another example of a von Neumann
regular ring is the ring Kn of n × n-matrices with entries from some field
K . If r is the rank of A ∈ Rn then there exist invertible matrices U and V
such that

A = U

(
Ir 0
0 0

)
V

(where Ir is the identity r × r -matrix). If we set X = V−1U−1, then

AXA = U

(
Ir 0
0 0

)(
Ir 0
0 0

)
V = U

(
Ir 0
0 0

)
V = A.
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A Boolean ring R is a ring in which a2 = a for every a ∈ R. Every
Boolean ring is von Neumann regular.
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Theorem

The following statements are equivalent for a ring R:

1) R is von Neumann regular;

2) every principal right (left) ideal is generated by an idempotent;

3) every finitely generated right (left) ideal is generated by an
idempotent
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A ring is unit-regular provided that for each a ∈ R there exists a unit (i.e.
an invertible element) u in R such that a = aua.

Example

Any direct product of fields, as well as any skew field, is unit-regular.
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Proposition

A von Neumann regular ring R has stable range 1 if and only if it is
unit-regular.

Recall that a commutative von Neumann regular ring has stable range 1.
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Exchange, clean and idempotent stable range one rings
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Studying the problem of idempotents lifting and exchange rings
Nicholson [5] has introduced the notion of a clean ring. In this section we
are going to review some of its useful properties.

5Nicholson W. K., Lifting idempotents and exchange rings // Trans. Amer. Alath.
Soc. – 1977. – 229. – P. 269-278.
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Definition

An element a in a ring R is called clean if it can be written as the sum of a
unit and an idempotent of the ring R. A ring R is said to be clean if every
element of R is clean.
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Proposition

Every homomorphic image of a clean ring is clean.

Proposition

A direct product of rings
∏

Ri is clean if and only if each ring Ri is clean.
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The next result is due to Han and Nicholson [6].

Theorem

A full matrix ring Mn(R) is clean if the underlying ring R is clean.

6Han J., Nicholson W. K. Extensions of clean rings // Comm. Algebra. – 2001.
– 29(6). – P. 2589-2595.
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Definition

For an ideal I of a ring R we say that idempotents lift modulo I if for each
element x ∈ R such that x − x2 ∈ I there exists an idempotent e of R
with the property e − x ∈ I . A ring R is an exchange ring if its
idempotents lift modulo every left (right) ideal I of R.
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Proposition

Every clean ring is an exchange ring.

Proposition

Every homomorphic image of an exchange ring is an exchange ring.
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Definition

A ring R is semiregular if R/J(R) is a von Neumann regular ring and
idempotents can be lifted modulo J(R).

Proposition

Every semiregular ring is an exchange ring.

Proposition

A ring R with central idempotents is clean if and only if it is an exchange
ring.
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Definition

A ring R is said to be reduced if it has no (nonzero) nilpotent elements.

Proposition

A reduced ring is a ring with central idempotents.
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Definition

A ring R is called a potent ring if its idempotents can be lifted modulo
J(R) and every left (right) ideal not contained in J(R) contains a nonzero
idempotent. A ring R is said to be semipotent if each left (right) ideal of
R not contained in J(R) contains a nonzero idempotent.
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It is well known that potent and semipotent conditions on ring are
left-right symmetric. Obviously, any potent ring is semipotent and every
exchange ring is potent.
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Example

Let D denote a division ring and let S be a subring of containing 1. Define

R = R(D, S) = {(x1, x2, . . . , xn, s) | n ≥ 1, xi ∈ D, s ∈ S}.

Then R is a ring (with componentwise operations) and R is an exchange
ring if and only if the same true of S . In fact S is a homomorphic image of
R while if S is an exchange ring, the same is true of R by a
componentwise calculation. Furthermore every nonzero left (right) ideal of
R(D,S) contains a nonzero idempotent so J(R) = 0. Then R(D,S) is a
commutative potent ring which is not exchange ring.
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Proposition

Every clean ring is semipotent.

Proposition

Every clean ring is potent.
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Gathering all results, we obtain the following chain of ring classes:

clean ⇒ exchange ⇒ potent ⇒ semipotent.

This inclusions are known to be irreversibe.
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In particular, Camillo and Yu [7] have proved that the ring in the
well-known Bergman’s [8] example is an exchange ring which is not clean.
Meanwhile, Nicholson [9] has shown that a potent ring need not to be an
exchange one and Nicholson and Zhou [10] have constructed an example
of semipotent ring which is not a potent one.

7Camillo V. P., Yu H. P. Exchange rings, units and idempotents // Comm. Algebra.
– 1994. – 22(12). – P. 4737-4749.

8Handelman D. Perspectivity and cancellatiorl in regular rings // J. Algebra. – 1977.
– 48. – P. 1-16.

9Nicholson W. K., Lifting idempotents and exchange rings // Trans. Amer. Alath.
Soc. – 1977. – 229. – P. 269-278.

10Nicholson W. K., Zhou Y. Clean general rings //J. Algebra. – 2005. – 291(1).
– P. 297-311.
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Definition

A ring R is said to be a ring of an idempotent stable range 1 if for any
a, b ∈ R such that Ra + Rb = R there exists an idempotent e ∈ R such
that a + eb is a unit of R.
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Proposition

Every ring of an idempotent stable range 1 is clean.

Proposition

Let R be a ring with central idempotent. Then the following statements
are equivalent:

(1) R is a ring of an idempotent stable range 1;

(2) R is a clean ring;

(3) is an exchange ring.
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Corollary

Any division ring, boolean ring and local ring is clean.

As an immediate corollary, we have the following result.

Proposition

A domain is clean if and only if it is a local domain.
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Therefore every semilocal domain which is not local is an example of a
ring of stable range 1 which is not a ring of idempotent stable range 1.
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Definition

A left R-module M is said to have the exchange property if for any module
X a decomposition

X = M ′ ⊕ Y =
⊕
i∈I

Ni

where M ′ ∼= M, there exist submodules Ni
′ ⊆ Ni for each i ∈ I such that

X = M ′ ⊕ (
⊕
i∈I

N ′i ).

If this condition holds for any finite set I (equivalently for |I | = 2) the
module M is said to have the finite exchange property.
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Theorem

Let R be a ring. The following conditions are equivalent for a left
R-module M:

(1) EndR(M) is an exchange ring;

(2) M has the finite exchange property.
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Definition

A commutative ring R is called a Gelfand ring if whenever a + b = 1 there
exist r , s ∈ R such that

(1 + ar)(1 + bs) = 0.

Definition

A commutative ring is called a PM-ring if every prime ideal is contained in
a unique maximal ideal.
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It is known that for any topological space X the ring C (X ) consisting of
all real-valued continuous functions on X under the pointwise operations is
always a PM-ring [11]. Other obvious examples of PM-rings include
commutative von Neumann regular rings, local rings and zero-dimensional
rings.

11Gillman L., Henriksen M. Rings of continuous function in which every finitely
generated ideal is principal // Trans. Amer. Math. Soc. – 1956. – 82(2). – P. 366-391.
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Theorem

A commutative ring R is a PM-ring if and only if R is a Gelfand ring.
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We obtain the following corollaries of Theorem:

(1) A commutative von Neumann regular ring R is a Gelfand ring; since
the equality a + b = 1 implies that (1− ax)a = (1− ax)(1− b) = 0,
where axa = a for some x ∈ R.

(2) Let R be a zero-dimensional ring. If N is the nilradical of R, then
R/N is obviously a von Neumann regular ring and therefore the
equality

a(1− ax) = 0

lifts to a(1− ax) ∈ N in R or an(1− ax)n = 0 for some n ∈ N.

(3) In a local ring R where a + b = 1 implies that at least a or b is a unit
and thus we have the equality

(1 + ar)(1 + bs) = 0

with r = −a−1 or s = −b−1, so a local ring is a Gelfand ring.
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Proposition

A commutative clean ring is a PM-ring.
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Morphic rings
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A well-known theorem of Erlich [12] states that a map φ in an
endomorphism ring of a R-module M is unit-regular if and only if it is
regular and

M/Im(φ) ∼= Ker(φ).

12Erlich G. Units and one-sided units in regular rings // Trans. Amer. Math. Soc.
– 1976. – 216. – P. 81-90.
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Definition

An element a of a ring R is called left (right) morphic if R/Ra ∼= l(a)
(respectively R/aR ∼= r(a)). The ring R is called a left (right) morphic
ring if every its element is left (right) morphic.

l(a) — left annihilator of a, r(a) — right annihilator of a.
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Definition

An element a ∈ R is called a von Neumann (unit-) regular if axa = a for
some (unit) x ∈ R.

If a is a unit-regular element then aua = a, where u is a unit. If we take
e = ua then a = u−1e is left morphic, because e2 = e and every
idempotent element is a left morphic element.
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Proposition

Every unit-regular ring is left and right morphic.

Example

The converse to the latter statement is false: Z4 is left morphic but it is
not unit-regular.
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Example

A polynomial ring R[x ] is never left or right morphic, because l(x) = 0 and
x /∈ U(R[x ]), and the only left (right) morphic domains are the division
rings.
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The following result gives another source of examples of left morphic rings.

Proposition

If a ring R has a unique left ideal I 6= 0 then R is left morphic.
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A commutative left morphic ring will be simply called a morphic ring.

Theorem

Let R be a commutative morphic ring. Then the following properties hold:

(1) finite intersections of principal ideals of R are principal;

(2) R is a Bezout ring.
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The End
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