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We prove that if R is an adequate domain, then every k x (k+2) and (k+ 2) x k£ matrices,
where k > 2, admits a diagonal reduction by elementary transformations.

B. B. 3abaBckuii. Jaemenmapran pedykyus mampuy nad adexsamuot obaacmvio [/ Marema-

tani Crygii. — 2002, — T.17, Ne2. — C.115-116.

Hoxazano, 910 ecin R — afgexkBaTHas 06aacTh, TO TPON3BOIbHEE k X (k+2) u (k+2) x k
MaTpuUEl, rae k > 2, NomycKaloT AHaroHAJLHOK PeNyKIHIO 5IeMEeHTAPHLIMA Mpeobpa3oBaHi-
AMH.

The aim of this note is to study the question of diagonalizability for matrices over an
adequate domain. We prove that if R is an adequate domain, then every k x k& + 2 and
k+2 x k matrices, where & > 2, admits a diagonal reduction by elementary transformations.

All the rings considered will be commutative and have the identity.

A ring is a Bezout ring if every finitely generated ideal is principal.

A ring R said to be an adequate domain if R is a Bezout domain and for a,b € R with
a # 0 there exist r,s € R such that « = rs, rR+ bR = R, and if a nonunit element s’ divides
s then R4+ bR # R [1].

Two matrices A and B over a ring R are said to be equivalent if there exist invertible
matrices P, () such that B = PAQ. A matrix A admits diagonal reduction if A is equivalent
to a diagonal matrix [2].

We denote by R,, the ring of all n xn matrices over R, and by G'L,,( R) its group of unites.
We write G E,(R) for the subgroup of G'L,,( R) generated by the elementary matrices. Denote
by (a,b) the greatest common divisor of a,b € R.

Theorem. Over a commutative adequate domain R, every k X k+ 2 and k + 2 X k matrix,
where k > 2, admits a diagonal reduction by elementary transformations.

Proof. We prove the theorem by induction on the number of rows. Let A be a 2 x 4
matrix. Without loss of generality we may change notations and assume that the greatest
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common divisor of all elements, of a is 1 [2]. By [3], the matrix A is reduced by elementary
transformations on the left to the form

a 000
Al:(bcdk)'

If b = 0 by [3], the matrix A can be reduced by elementary transformations to a diagonal
form.

If b # 0, write (a,b,¢) = 6, a = agd, b = byd, ¢ = ¢od and (ag, by, co) = 1. Write ¢g = rs
with the property asserted above. Then

(ra+b,¢)=(a,b,c)=24.
Multiplying the first row of a matrix A; by r and adding it to the second row, we obtain
a 000
Az = (ra—l—b c d k)

Since (ra 4+ b,¢) = (a,b,¢) and (a,b,c,d, k) =1, we have

the matrix

(ra+b,e,d,k)=1.

By [3], the matrix A, is reducible by elementary transformations to the form

A3:<1000>.
* ok ok ok

It is obvious that Ajz is reducible by elementary transformations to a diagonal form.
Induction on the number of rows completes the proof. O

Corollary. Over a commutative adequate domain R, for every n X m matrix A, where n,
m > 2, there exist invertible matrices P € GFE,(R), QQ € GE,,(R) such that PAQ is diagonal

matrix.
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