Menu

"I liked the algebraic way of looking at things.
I’m additionally fascinated when the algebraic method is applied to infinite objects”.

Irwing Kaplansky

# Common divisors and common multiples of singular matrices over elementary divisor domains

Andrij Romaniv

Department of Algebra
Pidstryhach Institute for Applied Problems
of Mechanics and Mathematics
National Academy of Sciences of Ukraine

Abstract:

Let R be an elementary divisor domain, A, B ∈ M2(R). There exists invertible matrices PA, PB and QA, QB such that

PAAQA=E,  where E=diag(ε12),  ε12,

PBBQB=Δ,  where Δ=diag(δ12),  δ12.

Denote by PA and PB the sets of all matrices PA, PB, respectively. Denote by (A,B)l, [A,B]r  the greatest common left divisor and  the least common right multiple of the matrices A and B.

Theorem1. Let A∼E=diag(ε1,0),  B∼Δ=diag(δ1,0),  PBPA-1=||sij||12,  PAPA, PBPB .  If  s21=0, then  PAPB≠∅  and  (A,B)l=P-1Φ,  where  Φ=diag((ε11), 0),  P∈ PAPB.

Theorem 2. Let A∼E=diag(ε1,0),  B∼Δ=diag(δ1,0),  PBPA-1=||sij||12,  PAPA, PBPB .
1) If  s21=0, then  PAPB≠∅  and  [A,B]r=P-1Ω,  where  Ω=diag([ε11], 0),  P∈ PAPB;
2) If  s21≠0, then  [A,B]r=0.

### Коментарі (0)

Rated 0 out of 5 based on 0 voters
There are no comments posted here yet

### Залиште свій коментар

1. Posting comment as a guest. Sign up or login to your account.
Rate this post:
Вкладення (0 / 3)
Share Your Location
back to top
Bookmaker with best odds http://wbetting.co.uk review site.

### contacts us

Department of Algebra and Logic
Faculty of Mechanics and Mathematics
Ivan Franko National University of L'viv
1 Universytetska Str., 79000 Lviv, Ukraine
Tel: (+380 322) 394 172
E-mail: oromaniv at franko.lviv.ua